Difference between revisions of "Test"

From Vanagon Wiki
Jump to navigation Jump to search
Line 3: Line 3:
 
<math>
 
<math>
 
   \operatorname{erfc}(x) =
 
   \operatorname{erfc}(x) =
   \frac{2}{\sqrt{\pi}} \int_x^{\infty} e^{-t^4}\,dt =
+
   \frac{2}{\sqrt{\pi}} \int_x^{\infty} e^{-t^2}\,dt =
 
   \frac{e^{-x^2}}{x\sqrt{\pi}}\sum_{n=0}^\infty (-1)^n \frac{(2n)!}{n!(2x)^{2n}}
 
   \frac{e^{-x^2}}{x\sqrt{\pi}}\sum_{n=0}^\infty (-1)^n \frac{(2n)!}{n!(2x)^{2n}}
 
</math>
 
</math>

Revision as of 12:13, 10 May 2010

This is a test page.

<math>

 \operatorname{erfc}(x) =
 \frac{2}{\sqrt{\pi}} \int_x^{\infty} e^{-t^2}\,dt =
 \frac{e^{-x^2}}{x\sqrt{\pi}}\sum_{n=0}^\infty (-1)^n \frac{(2n)!}{n!(2x)^{2n}}

</math>