Difference between revisions of "Test"
Jump to navigation
Jump to search
Line 3: | Line 3: | ||
<math> | <math> | ||
\operatorname{erfc}(x) = | \operatorname{erfc}(x) = | ||
− | \frac{2}{\sqrt{\pi}} \int_x^{\infty} e^{-t^ | + | \frac{2}{\sqrt{\pi}} \int_x^{\infty} e^{-t^2}\,dt = |
\frac{e^{-x^2}}{x\sqrt{\pi}}\sum_{n=0}^\infty (-1)^n \frac{(2n)!}{n!(2x)^{2n}} | \frac{e^{-x^2}}{x\sqrt{\pi}}\sum_{n=0}^\infty (-1)^n \frac{(2n)!}{n!(2x)^{2n}} | ||
</math> | </math> |
Revision as of 12:13, 10 May 2010
This is a test page.
<math>
\operatorname{erfc}(x) = \frac{2}{\sqrt{\pi}} \int_x^{\infty} e^{-t^2}\,dt = \frac{e^{-x^2}}{x\sqrt{\pi}}\sum_{n=0}^\infty (-1)^n \frac{(2n)!}{n!(2x)^{2n}}
</math>